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ABSTRACT  
The United States, her Allies, and adversaries are embracing advances in computing environments and 
technology (henceforth, AI) for both civil and military applications. Our work proposes to explore a central 
tension in autonomous and semi-autonomous systems, which is the fundamental tradeoff between the length 
of an unmanned system's deployment (sojourn time) and the uncertainty between individual system failures 
due to unscheduled maintenance and those due to adversary action. This paper is unique in that it will 
explore the problem from both a policy lens as well as an applied statistics point of view and provide insights 
for both the procurement and employment of unmanned systems more broadly. 

INTRODUCTION 

What does it mean to trust an unmanned system? This seemingly innocuous question is a central problem in 
a variety of both civil and military applications of unmanned technology. As the world becomes more 
automated and less supervised by human caretakers, autonomous systems will be left to endure for extended 
periods of time with limited monitoring. While autonomous systems with prolonged endurance could be a 
valuable asset for civilian and military maritime monitoring purposes, the decay of constellations of 
autonomous systems is an inevitable reality. But the discrepancy between the expected rate of degradation 
and actual rate could provide an early indicator of malign interference with a constellation of unmanned 
systems. 

The aforementioned analysis raises an important issue, which is the attribution of failure when no response is 
detected and a given system is presumed destroyed. If nonresponse is the sole indicator of system failure, it 
could be caused by a variety of factors including the environment, mechanical failure, or most worryingly, 
attrition, which we define as malign adversary action intended to disable and destroy unmanned systems. 
Using this definition, attrition is separate from failure because failure results from scenarios not involving 
purposeful adversary action. Attrition is the most serious scenario for military platforms, which could be 
carrying classified sensors and payloads onboard that the operator does not want falling into the hands of an 
adversary’s military. 

Similarly, understanding natural degradation patterns could enable one state to degrade an adversary’s 
systems in a manner that is difficult to distinguish from random failures. Such an approach would 
alternatively enable an ability to engage in offensive operations or limit Blue’s detection of indications and 
warnings (I&W) before Red engages in a military operation. 

Our contribution in this note is to consider both the reliability and game aspects of unmanned systems 
degradation in a unified structure. Our paper is structured as follows. In Section Two, we review literature 
from both the applied mathematical and policy viewpoints. In Section Three, we lay the preliminary, 
mathematical unifying aspects of both reliability and game theory. In Section Four, we explore specific 
scenarios before finally summarizing conclusions and providing recommendations for future analysis. 
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LITERATURE REVIEW 

This paper ties together thoughts from both applied probability theory, reliability, and some aspects of Game 
Theory. For a treatment of reliability as a Markov Process, see Grimmet and Stirzaker (2001). For an 
application of reliability to similar military problems, see (Gaver et al, 1984 and similar). For an exploration 
of strategically choosing a so-called ‘strike time’ in a two-player competition with varying payoff functions, 
see Schramm et al (2014). 

From a statistical point of view, determining when a process is maliciously subverted is a classic problem, 
touching on issues of both reliability as well as fraud detection. From a game theoretic point of view, two 
‘games’ are being simultaneously played in a unified construct; first, a game is played against an unthinking 
adversary – unscheduled failures – where Nature is the adversary. Second, a game is being played by a 
thinking adversary who may have partial information about the state of Nature against a thinking adversary. 
We recommend interested readers to see recent papers by (GG Brown) about the difference between these 
games. 

Analytically, we make a strong presumption of stationarity for the reliability process, by which we mean that 
the hazard experienced by any remote, autonomous entity is solely a function of the amount of exposure to 
the hazard it experiences. This leads to a fixed hazard rate. It can be shown (see Ross or similar) that the 
presumption of a fixed hazard rate leads directly to the Poisson Process. Nuanced readers may object to the 
use of the Poisson Process for a mechanical system. However, we justify it on two grounds. First and 
perhaps most importantly for our purposes, it allows us to frame both the ‘games’ as a single Markov Chain. 
Secondly, we assert that for the systems we consider, the hazard time is sufficiently long that even if the 
process is not truly stationary, it is at least locally stationary for some insights. 

As improvements in fuel economy and battery technology enable deployment of autonomous systems for 
months at a time, longer deployments will create more opportunities for adversaries to tamper with 
unmanned surveillance systems (Sliverajan et al, 2018). The U.S. is already adapting tactics and strategies 
including Distributed Maritime Operations (DMO) that are specifically designed to leverage long-term 
deployment of unmanned systems to tax adversary ISR systems by providing adversary ISR nodes with 
more targets than each can simultaneously track (Popa et al, 2018). 

From a policy perspective, determining attrition of unmanned systems can influence the employment of 
autonomous systems for surveillance and reconnaissance purposes. One of the principal values of unmanned 
systems is their ability to operate farther forward than manned platforms while taking on less risk due to the 
lack of personnel onboard. Tampering or destroying an unmanned system does not lead to a loss of life, 
which creates fewer consequences for Blue and additional incentive to use unmanned systems more 
frequently if there is insufficient will among national security decision-makers to deploy manned personnel 
into risky areas of action.  

A second policy issue worth considering is the attribution problem. Classifying a system’s nonresponse as 
failure or attrition is complex due to the relative anonymity of the sea and air, and a lack of ex post facto 
forensic evidence that would indicate the cause of an unmanned system’s nonresponse. In this respect, 
attributing the failure of unmanned systems is similar to the attribution problem present in cyberspace (see 
Finlay and Payne, 2019). Altogether, the political inclination to use unmanned platforms for ISR in forward 
operating areas coupled with an attribution problem for long-endurance systems creates the need to better 
understand how attrition may occur and what steps could be taken to mitigate Red attempts at attrition 
against Blue’s unmanned ecosystems. 
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ANALYSIS 

Mathematical Underpinnings 
We begin by defining the state space, which differs depending on the observer. The fundamental matrix of 
transitions contains omniscient knowledge of ground truth, where the Blue player (who owns the unmanned 
systems) has partial information on the state of deployed systems as a function of their interrogation / 
communication policy. Without loss of generality, we call the Blue player the maximizing player in the sense 
that they want to maximize the number of units operating either at any given time (the general problem) or at 
a given strike time (which we call the culmination problem). Conversely, the Red player is the minimizing 
player and either seeks to minimize Blue’s force generally or at a given time of their choosing. Thus, there 
are four possible instantiations of this game: 

Our first line of inquiry is as follows: We consider a system where unmanned vehicles are deployed remotely 
from their home station to a distant location. After deployment, these vehicles are subject to two types of 
'loss': 

a. Mechanical malfunction (failure) 
b. Enemy action (attrition) 

 
From the home station's point of view, both types of losses are instantiated as a 'failure to report', and 
therefore are identical. 

Our approach is to create a continuous time Markov Chain, where the state space represents the number of 
entities that are still operational per unit time. The side deploying the entities, which will refer to as the 'Blue' 
side without loss of generality, will know which entities are still operational, but information as to the cause 
of failure will be 'hidden'. The Red side seeks to minimize the number of operational units; but does so with 
the constraint that they want to do so in such a way that hides in the 'noise floor.’ If the Blue side sees too 
many inoperative systems, they may infer that Red is actively interfering. 

This construct is oddly similar to cheating at cards; one wants to be 'luckier than average', but not so lucky as 
to arouse the suspicions of the house (or other players). 

First, we consider the case where there is no interference from Red at all. In this instance, where there are 10 
remotely deployed units, we can see the rate of attrition rises the longer the ecosystem of unmanned units 
operates. At the same time, the rate of failure falls because there are fewer units available to fail independent 
of any tampering or malign influence.  
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Figure 1: System Attrition from Opportunistic Red Strike Times 

Figure 1 displays the scenario where Red attacks and destroys any Blue unmanned system they may find. 
This opportunistic pattern is not likely in reality as Red will likely attempt to avoid creating Blue 
suspicion that their systems are being attrited rather than failing due to mechanical malfunction and natural 
causes. In this case, we would rate risk as 1, or 100 percent, since every system found by Red will be 
destroyed.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Health of Fleet as a Function of Risk with Perfect Knowledge 
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In Figure 2, risk is defined as a subjective assessment the Blue commander makes regarding the likelihood 
that any one individual system will be attrited in a specific period of time. In this case, the time period under 
examination is ten months. The graph on the left demonstrates a risk-averse commander’s rate of attrition 
and failure, while the graph on the right demonstrates a risk acceptant Blue commander. This, of course, is 
more information than the Blue commander will see. From Blue's perspective, the difference between the red 
and green lines in the above graphs is not observed because Blue can only determine if a signal is lost, not 
why an unmanned ship’s signal has been lost. Seen through this lens, the difference between the two graphs 
above is not nearly as stark. However, it is important to note that the difference between five and ten percent 
attrition is relatively minimal, because a ten percent risk of attrition is still relatively low when considering 
Blue would likely be deploying unmanned assets forward of manned assets, which would mean unmanned 
ships and aerial vehicles would likely operate close to an adversary’s territorial waters (Talley, 2017). 
Operating close to shore or in contested areas would increase the probability of attrition to nearly half, which 
would yield far more drastic attrition curves than those shown below. 

Figure 3: Health of Fleet as a Function of Risk from Blue’s Perspective 

Figure 3 shows while the per-unit time risk from the Red force has risen significantly, the overall impact 
from Blue's perspective is minimal. Blue commanders may not immediately recognize one additional asset 
lost as a sign of increased attrition but may instead assume the higher-than-expected attrition rate is due to an 
unforeseen mechanical issue rather than malign interference. As a result, Red can conduct significant 
attrition without creating suspicion among Blue commanders.  

Red’s Opportunity 
Red's opportunity to find Blue targets is a function of both the number of Red assets and their radius of 
action. While detailed, statistical models of particles in motion exist, simulation suffices. We model the Blue 
fleet as randomly distributed particles in a 2-dimensional field, with reflecting barriers.1 A single Red 
searcher is also present, and when the distance between the Red searcher and a Blue target is within the 
                                                      

1 By which we mean that when a particle hits a barrier, it is reflected into the field. 
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search distance, the target is considered to be 'acquired'. As the number of times a Red searcher closes within 
search distance of a Blue target, the fewer undetected Blue units exist. This finding is important because the 
greater the number of units Red detects, the greater number of units Red is capable of destroying or 
influencing.  

 

Figure 4: Number of Blue Units Remaining Hidden Over Time 

Shortly after the deployment of a constellation of unmanned systems, Red will have the most potential 
targets to search for because not only are most if not all Blue platforms still operational, but they have also 
not been discovered. Therefore, the number of operational assets in a given search area will be at its highest 
and the grouping of assets will be at its most “dense.” However, as time progresses, the more units that have 
been discovered through a search increase, and the time between the discovery of each additional unmanned 
asset lengthens. The curve above demonstrates the number of Blue units that Red has yet to discover and the 
time between each discovery. As more Blue units are discovered and some Blue units fail, the number of 
undiscovered Blue platforms in the search area will diminish, and the time between discovering new Blue 
units will increase. 

Strategic Extensions 
Our plot above brings into focus the notion that a minimizing player (Red) has agency in the sense that they 
may be able decide upon a so-called 'strike time'.2 Red's strategy is to maximally degrade Blue's force over 
time without arousing Blue's suspicions. We assume that the Red player is indifferent to whether Blue's 
assets are attritted by Red, or if they simply fail. Part of Red’s ability to degrade the Blue fleet depends on 
Red’s ability to detect the location of Blue unmanned units, which is depicted in the plot above. We explore 
three cases below: 

                                                      

2 Here, 'strike time' takes on both a literal and mathematical meaning. The strike time is when the Red player decides to exercise 
its option, which in this case is an actual strike. 
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1. Red has no information about Blue’s fleet status 
From a technical perspective, the case where Red has no information or knowledge as to the disposition of 
Blue's fleet is the most likely scenario. In this case, Red is faced with the dual problems of not knowing the 
true reliability of Blue's assets (failure due to unscheduled maintenance) or the effectiveness of their own 
countering efforts. In this instance, there is unlikely to be a nuanced solution that will give Red an advantage 
without tipping their hand to Blue. A follow-on question for further consideration is whether or not this case 
implies that Blue themselves does not have a good estimate of their own capability. 

 
2. Red has incomplete information 

In the case where Red has partial (in the sense of not being completely reliable) information on the state of 
Blue's force, they may be able to take a hedging strategy. This strategy relies on the two-sided, joint 
probability functions, 

E[ObservedLoss|Loss]red , E[ObservedLoss|Loss]blue 

These functions are clearly not independent, and are expressions of each side's risk tolerance, strategy, and 
to some degree - fear - as they are statistical reasoning. 

3. Red has complete information 
In the case where Red has complete information, they may pursue a strategy where commanders know the 
number of Blue assets, they would like to attrit, have some sense of the amount of time (availability) to be 
attritted by Red, and the Strike Time. 

Reported Versus Expected Reliability 
Perhaps one of the best strategies for Red is to take advantage of is the fact Blue deploys its' forces with an 
expected reliability, which is determined using various techniques of Operations Research and Applied 
Statistics. However, as highlighted in a number of recent articles on readiness (see McLemore et al, 2021 and 
similar), expected readiness is generally not seen in the 'wild'. Red can take advantage of this by intentionally 
causing failures in Blue's force early. These losses in force from Red action are not easily differentiated from 
mechanical failures, with Blue assuming that the excess losses are from inaccurate estimates of reliability 
instead of adversary action. This problem is therefore similar to an issue seen in the commercial satellite 
sector (see Gures et al, 2019). 

CONCLUSION 

In this short note, we have highlighted the following tensions: First, the need for users of fleets with remote 
units that are unable to return to base for maintenance to consider the tension between failure and adversary 
action. Second, from an adversary perspective, the strategic tradeoff between minimizing Blue's overall fleet 
in time vice minimizing its capability at a particular moment in time (strike time). Understanding this tension 
and optimal Red strategies will - for the Blue player - lead to better technical and policy decisions. 

Further work along these lines of inquiry will involve replacing the notions about failure and attrition with 
actual distributions, distilled from data. An additional area for exploration will be to consider how these 
distributions will be adjusted in real time during deployment. 

Declaration: The authors declare no conflict of interest. 
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